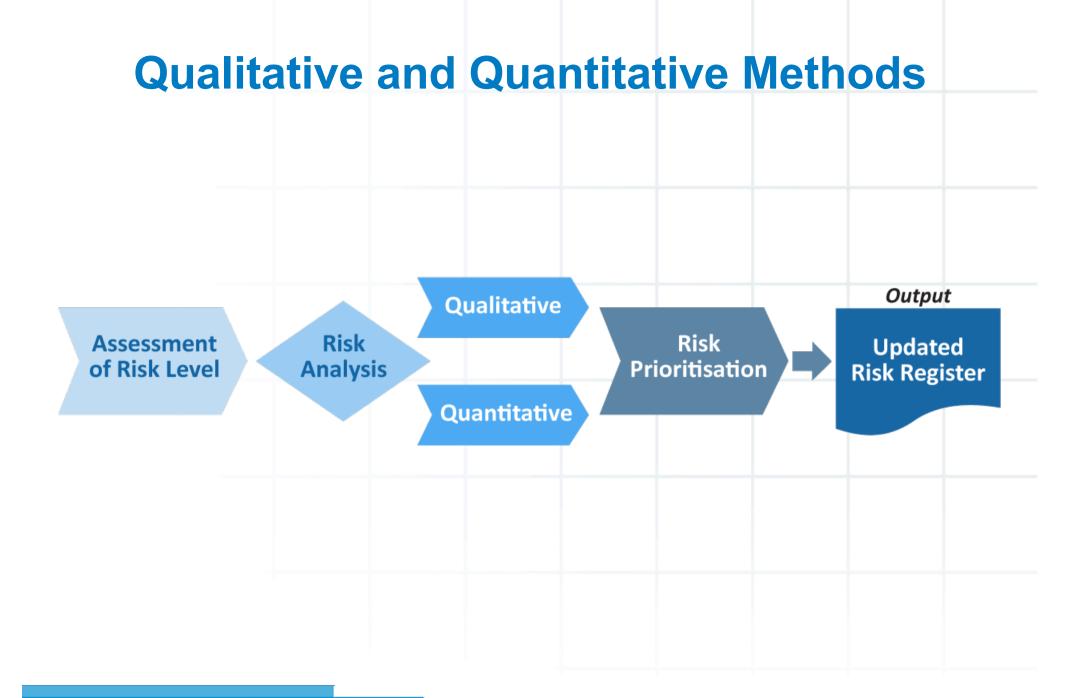
Adopting the Quadratic Mean Process to Quantify the Qualitative Risk Analysis

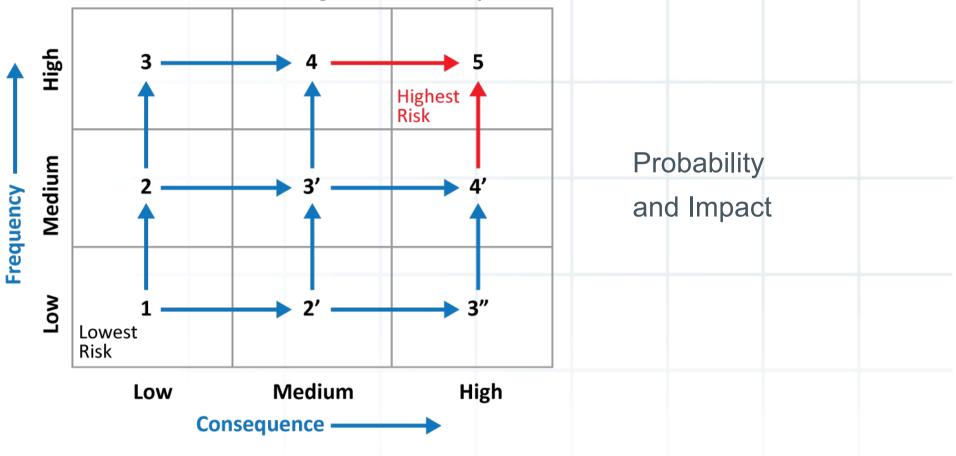

Session NA13RSK01

Ricardo Viana Vargas United Nations Office for Project Services (UNOPS)

₽ZZ.

"PMI" is a registered trade and service mark of the Project Management Institute, Inc. ©2013 Permission is granted to PMI for PMI® Marketplace use only.

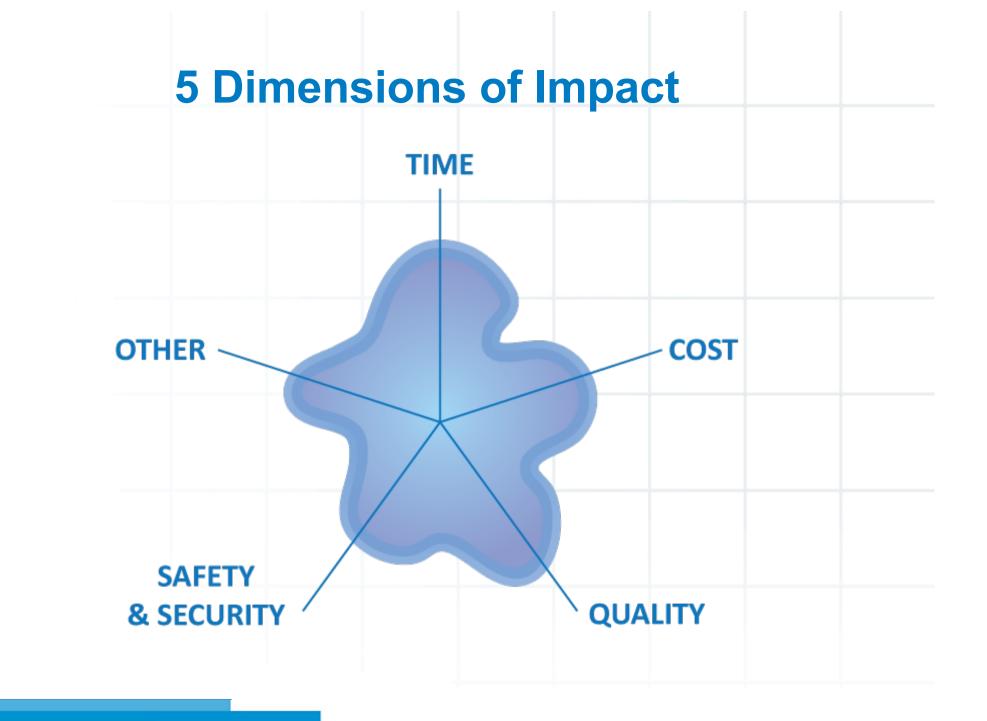
Qualitative and Quantitative Methods


	Quantitative Methods	Qualitative methods
Advantages	 Facilitates the cost benefit analysis Gives a more accurate value of the risk More valuable 	 Relatively simple to be implemented Easily determine risk categories with greater impact in the project Visually impactful
Disadvantages	 Results of the method may not be precise Numbers can give a false perception of precision More expensive and time consuming 	 A lack of understanding of the parameters used in the scale can lead to different interpretations Results can be biased Less valuable

The Essence of the Qualitative Analysis

Qualitative Risk Matrix

Risk Levels are Relative to Regions Connected by Arrows



Probability Scale

	Level	Score	e Description					
	Very	5	It is expected that the event will					
	High	occur. If it does not occurs it will be						
_			a surprise.					
	High	4	The event has a great chance of occurring.					
	Medium	3	The event can occur.					
	Low	2	It will be a surprise if the event					
			occurs.					
	Very	1	Very remote chance of the event to					
	Low		happen. Practically impossible.					

Impact on Time and Deadlines

 Assessment of the level of impact on the conclusion of the project

	Level	Score	Description
	Very High	5	Delays/Anticipation above 180 days or 6 months.
	High	4	Delays/Anticipation between 120 and 180 calendar days.
	Medium	3	Delays/Anticipation between 60 and 120 calendar days.
	Low	2	Delays/Anticipation between 15 and 60 calendar days.
	Very Low	1	Less than 15 calendar days of delays/anticipation.

Example

Impact on Costs

 Assessment of the level of impact on the final cost of the project

	Level	Score	Description
	Very High 5		Variation (positive or negative) above \$1,000,000.
	High	4	Variation (positive or negative) between \$500,000 and \$1,000,000.
	Medium	3	Variation (positive or negative) between \$250,000 and \$500,000.
	Low	2	Variation (positive or negative) between \$100,000 and \$250,000.
	Very Low	1	Variation (positive or negative) lower than \$100,000.

Example

		_	_
77	• Y	Y	
		-	

Impact on Quality

Assessment of the level of impact on the quality required for the project

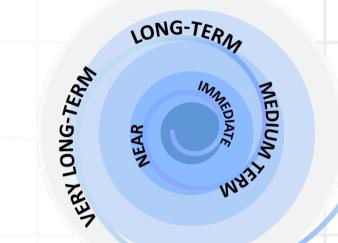
	Level	Score	Description
	Very High	5	Client rejects the delivery or product.
	High	4	Client asks for immediate corrective actions.
	Medium	3	Client perceives and asks for action/information.
	Low		Client perceives but forgives and no action is needed.
	Very Low	1	Imperceptible impact (most of the time not even perceived by the stakeholders).

Example

Impact on Safety and Security

 This impact group could include or not aspects related to environment, physical security of the work in the project, data security (IT), and reputation, among others

	High4EviderMedium3Impact	Description						
	Very High	5	Crisis. Impact is so evident and public that the project could not					
			proceed as planned.					
	High	4	Evident impact on environment/reputation.					
	Medium	3	Impact is perceived and raises concerns.					
	Low	2	Perceived impact on environment/reputation but without relevance.					
	Very Low	1	No impact on environment and reputation.					


Example

Other Impacts

 Optional group that aims to include any other specific impact of a risk that was not covered in the previous groups

Proximity: The 6th Impact Dimension

	Level	Score	Description
	Immediate	5	Event can happen anytime in the next 15 days.
	Short-term	4	Event can happen between 15 days and 3 months.
	Medium-Term	3	Event can happen between 3 and 6 months.
	Long-Term	2	Event can happen between 6 months and 1 year.
	Very Long-Term	1	Event can happen more than 1 year ahead.

⊨xampie

Calculating the Expected Value

 Risk measurement used to assess and prioritize risk events

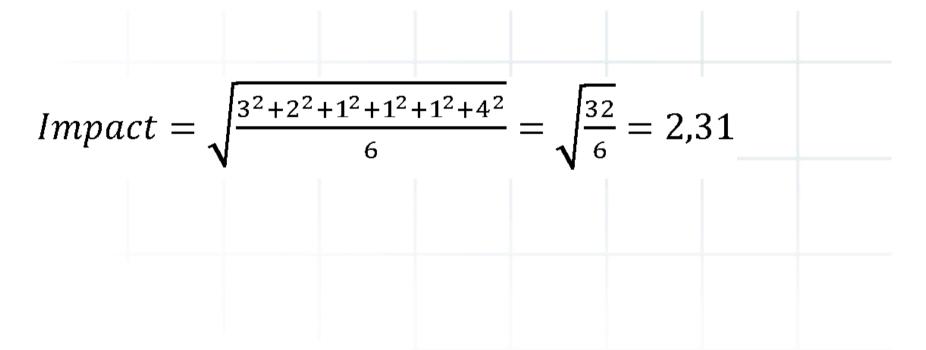
Expected Value = Probability x Impact

- Probability: 1 to 5
- Impact: 1 to 5 based on the formula

 $Impact = \sqrt{\frac{Impact \text{ on } _{Time}^{2} + Impact \text{ on } _{Cost}^{2} + Impact \text{ on } _{Quality}^{2} + Impact \text{ on } _{S\&Secutity}^{2} + Impact \text{ on } _{Other}^{2} + Proximity^{2}}{6}}$

Why Quadratic Mean (Root Mean Square) and not Arithmetic Mean

 Based on the assumption that different levels of impact add additional exposure to the project and this variance should be considered as a risk factor to the project.


 $Quadratic Mean^2 = Arithmetic Mean^2 + Variance$

 where the variance is a measure of how far a set of numbers is spread out

Example of Impact Calculation

	Impact Time	Impact Cost	Impact Quality	Impact S&S	Other Impact	Proximity
Risk A	3	2	1	1	1	4

Example of Project Expected Value Calculation

			Impact	Impact	Impact	Impact Safety	Other	Total	Expected
Туре	Probability	Proximity	Time	Cost	Quality	and Security	Impacts	Impact	Value
Threat	1	3	2	1	1	1	4	2,31	(2,31)
Threat	2	4	4	3	3	4	3	3,54	(7,07)
Threat	2	3	5	4	4	5	1	3,92	(7,83)
Opportunity	3	2	4	3	5	4	2	3,51	10,54
Opportunity	4	1	3	2	4	3	2	2,68	10,71
Threat	5	2	2	1	3	1	1	1,83	(9,13)

Total Risk Expected Value (5,10)

Conclusions

- The qualitative risk method is always a simplified model if compared with the quantitative methods.
- The process should be tailored to include different kinds of impacts and scales in order to produce a reliable quantitative result.
- This result allows opportunities and threats to be compared in order to determine the total risk exposure.
 - The concept that an opportunity can cancel a threat of the same level is not possible with the traditional qualitative risk management approach.

Do not miss

•

Probabilistic Distribution

Profile for Schedule, Investment and Results

OUTPUTS

OUTPUTS

Results

Schedule Gains

(ROI) OF THE PM

Return on Investmen (ROI) of the PMO

Complementary

Calculation Report 4. Final ROI Report

Decision Making

Lessons Learned

Agreement on Results

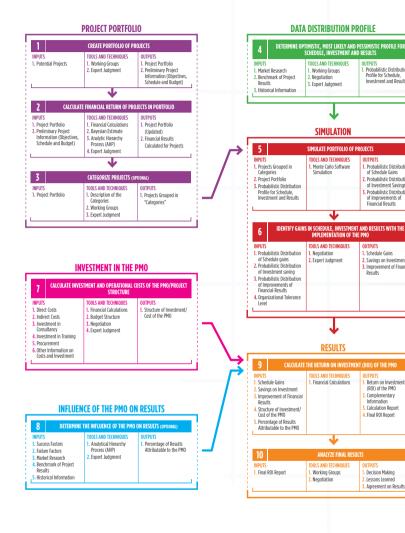
Information

2. Savings on Investment

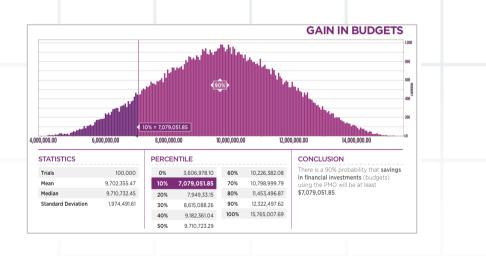
. Improvement of Financia

1 Prohabilistic Distribution

Probabilistic Distribution


of Investment Savings

Probabilistic Distribution


of Improvements of

Financial Results

of Schedule Gains

Determining the Mathematical ROI of a Project Management Implementation – Monday, October 28 at 10:45:00 AM

Contact Information

Ricardo Viana Vargas

ricardov@unops.org / ricardo@ricardo-vargas.com

www.unops.org

Twitter: @rvvargas

Session NA13RSK01

